Официальный сайт welinux 24/7/365

Вы не зарегистрированы

Авторизация



Уравнения высших степеней. Методы их решения

Данные об авторе
Автор(ы): 
Кушнарева Е.А.
Место работы, должность: 

МБОУ "СОШ им. В.Г.Шухова", г. Грайворона

Регион: 
Белгородская область
Характеристики урока (занятия)
Уровень образования: 
среднее (полное) общее образование
Целевая аудитория: 
Учитель (преподаватель)
Класс(ы): 
10 класс
Предмет(ы): 
Математика
Цель урока: 
  1. Закрепить понятие целого рационального уравнения -й степени.
  2. Сформулировать основные методы решения уравнений высших степеней (n > 3).
  3. Обучить основным методам решения уравнений высших степеней.

Научить по виду уравнения определять наиболее эффективный способ его решения

Учеников в классе: 
20
Краткое описание: 
<ul> <li>Лекционно-семинарская система обучения (лекции &ndash; объяснение нового материала, семинары &ndash; решение задач).</li> <li>Информационно-коммуникационные технологии (фронтальный опрос, устная работа с классом).</li> <li>Дифференцированное обучение, групповые и индивидуальные формы.</li> <li>Использование исследовательского метода в обучении, направленного на развитие математического аппарата и мыслительных способностей каждого конкретного ученика.</li> <li>Печатный материал &ndash; индивидуальный краткий конспект урока (основные понятия, формулы, утверждения, материал лекций сжато в виде схем или таблиц).</li> </ul>

Основные цели:

  1. Закрепить понятие целого рационального уравнения -й степени.
  2. Сформулировать основные методы решения уравнений высших степеней (n > 3).
  3. Обучить основным методам решения уравнений высших степеней.
  4. Научить по виду уравнения определять наиболее эффективный способ его решения.

Формы, методы и педагогические приемы, которые используются учителем на уроке:

  • Лекционно-семинарская система обучения (лекции – объяснение нового материала, семинары – решение задач).
  • Информационно-коммуникационные технологии (фронтальный опрос, устная работа с классом).
  • Дифференцированное обучение, групповые и индивидуальные формы.
  • Использование исследовательского метода в обучении, направленного на развитие математического аппарата и мыслительных способностей каждого конкретного ученика.
  • Печатный материал – индивидуальный краткий конспект урока (основные понятия, формулы, утверждения, материал лекций сжато в виде схем или таблиц).

План урока:

  1. Организационный момент.
    Цель этапа: включить учащихся в учебную деятельность, определить содержательные рамки урока.
  2. Актуализация знаний учащихся.
    Цель этапа: актуализировать знания учащихся по изученным ранее смежным темам
  3. Изучение новой темы (лекция). Цель этапа: сформулировать основные методы решения уравнений высших степеней (n > 3)
  4. Подведение итогов.
    Цель этапа: еще раз выделить ключевые моменты в материале, изученном на уроке.
  5. Домашнее задание.
    Цель этапа: сформулировать домашнее задание для учащихся.

Конспект урока

1. Организационный момент.

Формулировка темы урока: “Уравнения высших степеней. Методы их решения”.

2. Актуализация знаний учащихся.

Теоретический опрос – беседа. Повторение некоторых ранее изученных сведений из теории. Учащиеся формулируют основные определения и дают формулировки необходимых теорем. Приводят примеры, демонстрируя уровень полученных ранее знаний.

  • Понятие уравнения с одной переменной.
  • Понятие корня уравнения, решения уравнения.
  • Понятие линейного уравнения с одной переменной, понятие квадратного уравнения с одной переменной.
  • Понятие равносильности уравнений, уравнения-следствия (понятие посторонних корней), переход не по следствию (случай потери корней).
  • Понятие целого рационального выражения с одной переменной.
  • Понятие целого рационального уравнения n-й степени. Стандартный вид целого рационального уравнения. Приведенное целое рациональное уравнение.
  • Переход к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • Понятие многочлена n-й степени от x. Теорема Безу. Следствия из теоремы Безу. Теоремы о корнях (Z-корни и Q-корни) целого рационального уравнения с целыми коэффициентами (соответственно приведенного и неприведенного).
  • Схема Горнера.

3. Изучение новой темы.

Будем рассматривать целое рациональное уравнение n-й степени стандартного вида с одной неизвестной переменной x : Pn(x) = 0 , где Pn(x) = anxn + an-1xn-1 + a1x + a0 – многочлен n-й степени от xan ≠ 0. Если an = 1 то такое уравнение называют приведенным целым рациональным уравнением n-й степени. Рассмотрим такие уравнения при различных значениях n и перечислим основные методы их решения.

n = 1 – линейное уравнение.

n = 2 – квадратное уравнение. Формула дискриминанта. Формула для вычисления корней. Теорема Виета. Выделение полного квадрата.

n = 3 – кубическое уравнение.

Метод группировки.

Пример: x3 – 4x2 – x + 4 = 0 http://festival.1september.ru/articles/646258/img1.gif (x – 4)(x2 – 1) = 0 http://festival.1september.ru/articles/646258/img1.gif x1 = 4 , x2 = 1, x3 = -1.

Возвратное кубическое уравнение вида ax3 + bx2 + bx + a = 0. Решаем, объединяя члены с одинаковыми коэффициентами.

Пример: x3 – 5x2 – 5x + 1 = 0 http://festival.1september.ru/articles/646258/img1.gif (x + 1)(x2 – 6x + 1) = 0 http://festival.1september.ru/articles/646258/img1.gif x1 = -1, x2 = 3 + 2http://festival.1september.ru/articles/646258/img2.gifx3 = 3 – 2http://festival.1september.ru/articles/646258/img2.gif.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный, и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Z-корнях приведенного целого рационального уравнения с целыми коэффициентами.

Пример: x3 – 9x2 + 23– 15 = 0. Уравнение приведенное. Выпишем делители свободного члена {+1; +3; +5; +15}. Применим схему Горнера:

 

x3

x2

x1

x0

вывод

 

1

-9

23

-15

 

1

1

1 х 1 – 9 = -8

1 х (-8) + 23 = 15

1 х 15 – 15 = 0

1 – корень

 

x2

x1

x0

   
 

Получаем http://festival.1september.ru/articles/646258/img1.gif (x – 1)(x2 – 8x + 15) = 0 http://festival.1september.ru/articles/646258/img1.gif x1 = 1, x2 = 3, x3 = 5.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. При применении этого метода необходимо сделать акцент на том, что перебор в данном случае конечный и корни мы подбираем по определенному алгоритму в соответствии с теоремой о Q-корнях неприведенного целого рационального уравнения с целыми коэффициентами.

Пример: 9x3 + 27x2 – x – 3 = 0. Уравнение неприведенное. Выпишем делители свободного члена {+1; +3}. Выпишем делители коэффициента при старшей степени неизвестного. {+1; +3; +9} Следовательно, корни будем искать среди значений {+1; +http://festival.1september.ru/articles/646258/img3.gif+http://festival.1september.ru/articles/646258/img4.gif+3}. Применим схему Горнера:

 

x3

x2

x1

x0

вывод

 

9

27

-1

-3

 

1

9

1 x 9 + 27 = 36

1 x 36 – 1 = 35

1 x 35 – 3 = 32 ≠ 0

1 – не корень

-1

9

-1 x 9 + 27 = 18

-1 x 18 – 1 = -19

-1 x (-19) – 3 = 16 ≠ 0

-1 – не корень

http://festival.1september.ru/articles/646258/img3.gif

9

http://festival.1september.ru/articles/646258/img3.gif x 9 + 27 = 30

http://festival.1september.ru/articles/646258/img3.gif x 30 – 1 = 9

http://festival.1september.ru/articles/646258/img3.gif x 9 – 3 = 0

корень

 

x2

x1

x0

   
 

Получаем http://festival.1september.ru/articles/646258/img1.gif (x – http://festival.1september.ru/articles/646258/img3.gif)(9x2 + 30x + 9) = 0 http://festival.1september.ru/articles/646258/img1.gif x1 = http://festival.1september.ru/articles/646258/img3.gifx2 = -http://festival.1september.ru/articles/646258/img3.gif , x3 = -3.

Для удобства подсчета при подборе Q-корней бывает удобно сделать замену переменной, перейти к приведенному уравнению и подбирать Z-корни.

  • Если свободный член равен 1.

http://festival.1september.ru/articles/646258/img5.gif

  • Если можно воспользоваться заменой вида y = kx .

http://festival.1september.ru/articles/646258/img6.gif

Формула Кардано. Существует универсальный метод решения кубических уравнений – это формула Кардано. Эту формулу связывают с именами итальянских математиков Джероламо Кардано (1501–1576), Николо Тарталья (1500–1557), Сципиона дель Ферро (1465–1526). Эта формула лежит за рамками нашего курса.

n = 4 – уравнение четвертой степени.

Метод группировки.

Пример: x4 + 2x3 + 5x2 + 4x – 12 = 0 http://festival.1september.ru/articles/646258/img1.gif (x4 + 2x3) + (5x2 + 10x) – (6x + 12 ) = 0 http://festival.1september.ru/articles/646258/img1.gif (x + 2)(x3 + 5x – 6) = 0 http://festival.1september.ru/articles/646258/img1.gif (x + 2)(x– 1)(x2 + x + 6) = 0 http://festival.1september.ru/articles/646258/img1.gif x1 = -2, x2 = 1.

Метод замены переменной.

  • Биквадратное уравнение вида ax4 + bx2 + с = 0.

Пример: x4 + 5x2 – 36 = 0. Замена y = x2. Отсюда y1 = 4, y2 = -9. Поэтому x1,2 = +2 .

  • Возвратное уравнение четвертой степени вида ax4 + bx3 + cx2 + bx + a = 0.

Решаем, объединяя члены с одинаковыми коэффициентами, путем замены вида

http://festival.1september.ru/articles/646258/img8.gif

  • Обобщенное возвратное уравнение четвертой степени вида ax4 + bx3 + cx2 – bx + a = 0.

http://festival.1september.ru/articles/646258/img9.gif

  • Обобщенное возвратное уравнение четвертой степени вида ax4 + bx3 + cx2 + kbx + k2a = 0.

http://festival.1september.ru/articles/646258/img10.gif

  • Замена общего вида. Некоторые стандартные замены.

Пример 1:

http://festival.1september.ru/articles/646258/img11.gif

Пример 3. Замена общего вида (вытекает из вида конкретного уравнения).

http://festival.1september.ru/articles/646258/img12.gif

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Формула общего вида. Существует универсальный метод решения уравнений четвертой степени. Эту формулу связывают с именем Людовико Феррари (1522–1565). Эта формула лежит за рамками нашего курса.

n > 5 – уравнения пятой и более высоких степеней.

Уравнение с целыми коэффициентами. Подбор Z-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Уравнение с целыми коэффициентами. Подбор Q-корней на основании теоремы. Схема Горнера. Алгоритм аналогичен рассмотренному выше для n = 3.

Симметрические уравнения. Любое возвратное уравнение нечетной степени имеет корень x = -1 и после разложения его на множители получаем, что один сомножитель имеет вид (x + 1), а второй сомножитель – возвратное уравнение четной степени (его степень на единицу меньше, чем степень исходного уравнения). Любое возвратное уравнение четной степени вместе с корнем вида x = φ содержит и корень вида http://festival.1september.ru/articles/646258/img13.gif. Используя эти утверждения, решаем задачу, понижая степень исследуемого уравнения.

Метод замены переменной. Использование однородности.

http://festival.1september.ru/articles/646258/img14.gif

Не существует формулы общего вида для решения целых уравнений пятой степени (это показали итальянский математик Паоло Руффини (1765–1822) и норвежский математик Нильс Хенрик Абель (1802–1829)) и более высоких степеней (это показал французский математик Эварист Галуа (1811–1832)).

  • Напомним еще раз, что на практике возможно использование комбинации перечисленных выше методов. Удобно переходить к совокупности уравнений более низких степеней путем разложения исходного уравнения на множители.
  • За рамками нашего сегодняшнего обсуждения остались широко используемые на практике графические методы решения уравнений и методы приближенного решения уравнений высших степеней.
  • Бывают ситуации, когда у уравнения нет R-корней. Тогда решение сводится к тому, чтобы показать, что уравнение корней не имеет. Для доказательства анализируем поведение рассматриваемых функций на промежутках монотонности. Пример: уравнение x8 – x3 + 1 = 0 не имеет корней.
  • Использование свойства монотонности функций. Бывают ситуации, когда использование различных свойств функций позволяет упростить поставленную задачу. 
    Пример 1: уравнение x5 + 3x – 4 = 0 имеет один корень = 1. По свойству монотонности анализируемых функций других корней нет. 
    Пример 2: уравнение x4 + (x – 1)4 = 97 имеет корни x1 = -2 и x2 = 3. Проанализировав поведение соответствующих функций на промежутках монотонности, заключаем, что других корней нет.

4. Подведение итогов.

Резюме: Теперь мы овладели основными методами решения различных уравнений высших степеней (для n > 3). Наша задача научиться эффективно использовать перечисленные выше алгоритмы. В зависимости от вида уравнения мы должны будем научиться определять, какой способ решения в данном случае является наиболее эффективным, а также правильно применять выбранный метод.

5. Домашнее задание.

[1]: п.7, стр. 164–174, №№ 33–36, 39–44, 46,47.

[4]: №№ 9.1–9.4, 9.6–9.8, 9.12, 9.14–9.16, 9.24–9.27.

Возможные темы докладов или рефератов по данной тематике:

  • Формула Кардано
  • Графический метод решения уравнений. Примеры решения.
  • Методы приближенного решения уравнений.

Анализ усвоения материала и интереса учащихся к теме:

Опыт показывает, что интерес учащихся в первую очередь вызывает возможность подбора Z-корней и Q-корней уравнений при помощи достаточно простого алгоритма с использованием схемы Горнера. Также учащиеся интересуются различными стандартными типами замены переменных, которые позволяют существенно упрощать вид задачи. Особый интерес обычно вызывают графические методы решения. В этом случае дополнительно можно разобрать задачи на графический метод решения уравнений; обсудить общий вид графика для многочлена 3, 4, 5 степени; проанализировать, как связано число корней уравнений 3, 4, 5 степени с видом соответствующего графика. Ниже приведен список книг, в которых можно найти дополнительную информацию по данной тематике.


Смотреть видео онлайн


Смотреть русское с разговорами видео

Online video HD

Видео скачать на телефон

Русские фильмы бесплатно

Full HD video online

Смотреть видео онлайн

Смотреть HD видео бесплатно

School смотреть онлайн