Официальный сайт goldsoftware 24/7/365

Вы не зарегистрированы

Авторизация



Система команд процессора

Выберите действие:

 СИСТЕМА КОМАНД ПРОЦЕССОРА

Система команд - соглашение о предоставляемых архитектурой средствах программирования, а именно: определённых типах данных, инструкций, системы регистров, методов адресации, моделей памяти, способов обработки прерываний и исключений, методов ввода и вывода.

  1. Команды пересылки данных
  2. Арифметические команды
  3. Логические команды
  4. Команды переходов

Команды пересылки данных

Команды пересылки данных занимают очень важное место в системе команд любого процессора. Они выполняют следующие важнейшие функции:

  1. загрузка (запись) содержимого во внутренние регистры процессора;
  2. сохранение в памяти содержимого внутренних регистров процессора;
  3. копирование содержимого из одной области памяти в другую;
  4. запись в устройства ввода/вывода и чтение из устройств ввода/вывода.

В некоторых процессорах (например, Т-11) все эти функции выполняются одной единственной командой MOV (для байтовых пересылок — MOVB) но с различными методами адресации операндов.

В других процессорах помимо команды MOV имеется еще несколько команд для выполнения перечисленных функций. Например, для загрузки регистров могут использоваться команды загрузки, причем для разных регистров — разные команды (их обозначения обычно строятся с использованием слова LOAD — загрузка). Часто выделяются специальные команды для сохранения в стеке и для извлечения из стека (PUSH — сохранить в стеке, POP — извлечь из стека). Эти команды выполняют пересылку с автоинкрементной и с автодекрементной адресацией (даже если эти режимы адресации не предусмотрены в процессоре в явном виде).

Иногда в систему команд вводится специальная команда MOVS для строчной (или цепочечной) пересылки данных (например, в процессоре 8086). Эта команда пересылает не одно слово или байт, а заданное количество слов или байтов (MOVSB), то есть инициирует не один цикл обмена по магистрали, а несколько. При этом адрес памяти, с которым происходит взаимодействие, увеличивается на 1 или на 2 после каждого обращения или же уменьшается на 1 или на 2 после каждого обращения. То есть в неявном виде применяется автоинкрементная или автодекрементная адресация.

В некоторых процессорах (например, в процессоре 8086) специально выделяются функции обмена с устройствами ввода/вывода. Команда IN используется для ввода (чтения) информации из устройства ввода/вывода, а команда OUT используется для вывода (записи) в устройство ввода/вывода. Обмен информацией в этом случае производится между регистром-аккумулятором и устройством ввода/вывода. В более продвинутых процессорах этого же семейства (начиная с процессора 80286) добавлены команды строчного (цепочечного) ввода (команда INS) и строчного вывода (команда OUTS). Эти команды позволяют пересылать целый массив (строку) данных из памяти в устройство ввода/вывода (OUTS) или из устройства ввода/вывода в память (INS). Адрес памяти после каждого обращения увеличивается или уменьшается (как и в случае с командой MOVS).

Также к командам пересылки данных относятся команды обмена информацией (их обозначение строится на основе слова Exchange). Может быть предусмотрен обмен информацией между внутренними регистрами, между двумя половинами одного регистра (SWAP) или между регистром и ячейкой памяти.

Арифметические команды

Арифметические команды рассматривают коды операндов как числовые двоичные или двоично-десятичные коды. Эти команды могут быть разделены на пять основных групп:

  1. команды операций с фиксированной запятой (сложение, вычитание, умножение, деление);
  2. команды операций с плавающей запятой (сложение, вычитание, умножение, деление);
  3. команды очистки;
  4. команды инкремента и декремента;
  5. команда сравнения.

Команды операций с фиксированной запятой работают с кодами в регистрах процессора или в памяти как с обычными двоичными кодами. Команда сложения (ADD) вычисляет сумму двух кодов. Команда вычитания (SUB) вычисляет разность двух кодов. Команда умножения (MUL) вычисляет произведение двух кодов (разрядность результата вдвое больше разрядности сомножителей). Команда деления (DIV) вычисляет частное от деления одного кода на другой. Причем все эти команды могут работать как с числами со знаком, так и с числами без знака.

Команды операций с плавающей запятой (точкой) используют формат представления чисел с порядком и мантиссой (обычно эти числа занимают две последовательные ячейки памяти). В современных мощных процессорах набор команд с плавающей запятой не ограничивается только четырьмя арифметическими действиями, а содержит и множество других более сложных команд, например, вычисление тригонометрических функций, логарифмических функций, а также сложных функций, необходимых при обработке звука и изображения.

Команды очистки (CLR) предназначены для записи нулевого кода в регистр или ячейку памяти. Эти команды могут быть заменены командами пересылки нулевого кода, но специальные команды очистки обычно выполняются быстрее, чем команды пересылки. Команды очистки иногда относят к группе логических команд, но суть их от этого не меняется.

Команды инкремента (увеличения на единицу, INC) и декремента (уменьшения на единицу, DEC) также бывают очень удобны. Их можно в принципе заменить командами суммирования с единицей или вычитания единицы, но инкремент и декремент выполняются быстрее, чем суммирование и вычитание. Эти команды требуют одного входного операнда, который одновременно является и выходным операндом.

Наконец, команда сравнения (обозначается CMP) предназначена для сравнения двух входных операндов. По сути, она вычисляет разность этих двух операндов, но выходного операнда не формирует, а всего лишь изменяет биты в регистре состояния процессора (PSW) по результату этого вычитания. Следующая за командой сравнения команда (обычно это команда перехода) будет анализировать биты в регистре состояния процессора и выполнять действия в зависимости от их значений (о командах перехода речь идет в разделе 3.3.4). В некоторых процессорах предусмотрены команды цепочечного сравнения двух последовательностей операндов, находящихся в памяти (например, в процессоре 8086 и совместимых с ним).

Логические команды

Логические команды выполняют над операндами логические (побитовые) операции, то есть они рассматривают коды операндов не как единое число, а как набор отдельных битов. Этим они отличаются от арифметических команд. Логические команды выполняют следующие основные операции:

  1. логическое И, логическое ИЛИ, сложение по модулю 2 (Исключающее ИЛИ);
  2. логические, арифметические и циклические сдвиги;
  3. проверка битов и операндов;
  4. установка и очистка битов (флагов) регистра состояния процессора (PSW).

Команды логических операций позволяют побитно вычислять основные логические функции от двух входных операндов. Кроме того, операция И (AND) используется для принудительной очистки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие очистки, установлены в нуль). Операция ИЛИ (OR) применяется для принудительной установки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие установки в единицу, равны единице). Операция "Исключающее ИЛИ" (XOR) используется для инверсии заданных битов (в качестве одного из операндов при этом применяется код маски, в котором биты, подлежащие инверсии, установлены в единицу). Команды требуют двух входных операндов и формируют один выходной операнд.

Команды сдвигов позволяют побитно сдвигать код операнда вправо (в сторону младших разрядов) или влево (в сторону старших разрядов). Тип сдвига (логический, арифметический или циклический) определяет, каково будет новое значение старшего бита (при сдвиге вправо) или младшего бита (при сдвиге влево), а также определяет, будет ли где-то сохранено прежнее значение старшего бита (при сдвиге влево) или младшего бита (при сдвиге вправо). Например, при логическом сдвиге вправо в старшем разряде кода операнда устанавливается нуль, а младший разряд записывается в качестве флага переноса в регистр состояния процессора. А при арифметическом сдвиге вправо значение старшего разряда сохраняется прежним (нулем или единицей), младший разряд также записывается в качестве флага переноса.

Циклические сдвиги позволяют сдвигать биты кода операнда по кругу (по часовой стрелке при сдвиге вправо или против часовой стрелки при сдвиге влево). При этом в кольцо сдвига может входить или не входить флаг переноса. В бит флага переноса (если он используется) записывается значение старшего бита при циклическом сдвиге влево и младшего бита при циклическом сдвиге вправо. Соответственно, значение бита флага переноса будет переписываться в младший разряд при циклическом сдвиге влево и в старший разряд при циклическом сдвиге вправо.

Команды проверки битов и операндов предназначены для установки или очистки битов регистра состояния процессора в зависимости от значения выбранных битов или всего операнда в целом. Выходного операнда команды не формируют. Команда проверки операнда (TST) проверяет весь код операнда в целом на равенство нулю и на знак (на значение старшего бита), она требует только одного входного операнда. Команда проверки бита (BIT) проверяет только отдельные биты, для выбора которых в качестве второго операнда используется код маски. В коде маски проверяемым битам основного операнда должны соответствовать единичные разряды.

Команды переходов

Команды переходов предназначены для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д., то есть они нарушают последовательный ход выполнения программы. Эти команды записывают в регистр-счетчик команд новое значение и тем самым вызывают переход процессора не к следующей по порядку команде, а к любой другой команде в памяти программ. Некоторые команды переходов предусматривают в дальнейшем возврат назад, в точку, из которой был сделан переход, другие не предусматривают этого. Если возврат предусмотрен, то текущие параметры процессора сохраняются в стеке. Если возврат не предусмотрен, то текущие параметры процессора не сохраняются.

Команды переходов без возврата делятся на две группы:

  1. команды безусловных переходов;
  2. команды условных переходов.

В обозначениях этих команд используются слова Branch (ветвление) и Jump (прыжок).

Команды безусловных переходов вызывают переход в новый адрес независимо ни от чего. Они могут вызывать переход на указанную величину смещения (вперед или назад) или же на указанный адрес памяти. Величина смещения или новое значение адреса указываются в качестве входного операнда.

Команды условных переходов вызывают переход не всегда, а только при выполнении заданных условий. В качестве таких условий обычно выступают значения флагов в регистре состояния процессора (PSW). То есть условием перехода является результат предыдущей операции, меняющей значения флагов. Всего таких условий перехода может быть от 4 до 16. Несколько примеров команд условных переходов:

  1. переход, если равно нулю;
  2. переход, если не равно нулю;
  3. переход, если есть переполнение;
  4. переход, если нет переполнения;
  5. переход, если больше нуля;
  6. переход, если меньше или равно нулю.

Если условие перехода выполняется, то производится загрузка в регистр-счетчик команд нового значения. Если же условие перехода не выполняется, счетчик команд просто наращивается, и процессор выбирает и выполняет следующую по порядку команду.

Специально для проверки условий перехода применяется команда сравнения (CMP), предшествующая команде условного перехода (или даже нескольким командам условных переходов). Но флаги могут устанавливаться и любой другой командой, например командой пересылки данных, любой арифметической или логической командой. Отметим, что сами команды переходов флаги не меняют, что как раз и позволяет ставить несколько команд переходов одну за другой.

Совместное использование нескольких команд условных и безусловных переходов позволяет процессору выполнять разветвленные алгоритмы любой сложности.

Команды переходов с дальнейшим возвратом в точку, из которой был произведен переход, применяются для выполнения подпрограмм, то есть вспомогательных программ. Эти команды называются также командами вызова подпрограмм (распространенное название — CALL). Использование подпрограмм позволяет упростить структуру основной программы, сделать ее более логичной, гибкой, легкой для написания и отладки. В то же время надо учитывать, что широкое использование подпрограмм, как правило, увеличивает время выполнения программы.

 Вопросы:

  1. Что такое система команд?
  2. На сколько типов подразделяют систему команд?
  3. Какие операции выполняют команды пересылкиданных?
  4. Какие операции выполняют арифметические команды?
  5. Какие операции выполняют логические команды?
  6. Какие операции выполняюткоманды переходов?
  7. Чем отлличаются команды операций с фиксированной запятой от команды операций с плавающей запятой?
  8. Что такое инкремент и дикремент?
  9. Какой принцип работы команды сравнения?
  10. Что такое подпроггамма и для чего она нужна?
Прикрепленный файл Size
Процессор.png 679.56 KB
ПРОЦЕССОР.ppt 3.76 MB

»  Tags for document:
»  Размещено в сообществах:   

Смотреть видео hd онлайн


Смотреть русское с разговорами видео

Online video HD

Видео скачать на телефон

Русские фильмы бесплатно

Full HD video online

Смотреть видео онлайн

Смотреть HD видео бесплатно

School смотреть онлайн